If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2+8p+1=0
a = 6; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·6·1
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*6}=\frac{-8-2\sqrt{10}}{12} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*6}=\frac{-8+2\sqrt{10}}{12} $
| -16k=-16-15k | | 7-10p=3-9p | | 7(x+3)+1=8(x+2)+2 | | 6r=7r-2 | | 9s2–9s+2=0 | | 9z+5=-12 | | 0.4x=1.88 | | 15g=16+7g | | -6-2s=s | | 3f-9=4f | | 2v2+2v+2=0 | | 15.5v+15.33=-16.6v-19.98 | | 3u2–6u–6=0 | | Y=0.25x4-2 | | 7(x+3)-1=5x+2-1 | | -12b-3=-19-13b | | 11-w=-23 | | 4d+9=29 | | 3x=7.5 | | -17c+20=-11c-6-4c | | 4x-14+x+7+x-1=180 | | 7p2+2p+1=0 | | 8m-14=34 | | 41-5x=9x-1 | | Y=0.25x0-2 | | 18-12f=-4 | | 412-5x=9x-1 | | Y=0.25x-4-2 | | 3k=16 | | 8q2+6q+3=0 | | 28.5=20+15.5m | | 152=50x+2 |