If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6r^2+7r=0
a = 6; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·6·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*6}=\frac{-14}{12} =-1+1/6 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*6}=\frac{0}{12} =0 $
| 8r2+7r+3=0 | | z2+3z+6=0 | | 50=50/2x | | 4-2*x=x+3 | | (21x+20)=(13x-10) | | 9y-4=94 | | 2(x+3)=2(x+3)=22 | | 17(d+13)=–17 | | 3x-9x+4=16 | | v2+2v–1=0 | | p+7p-5p=24 | | 2r2+7r+1=0 | | 21x+20=13x-10 | | 2(3x-10)=9 | | 3-2(2x=1)=x+17 | | 4x+70+2x+100+130=180 | | 3/1=4/x | | -j+3=8 | | 4x+70+2x+100+15=180 | | 4x+70+2x+100+45=180 | | 3.6x+7.3=5.6x-4.6 | | 4x+70+2x+100+50=180 | | 51+b=90 | | 4(x+3)=3(x+2)+6 | | c+-16=2 | | 7=|m+3| | | m+10=-9 | | -2x-10=10-6x | | 3.6y+7.3=5.6y-4.6 | | j+-15=-7 | | 48x3−27x=0 | | 3t-1+1t-5t=1 |