If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t+30t^2=0
a = 30; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·30·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*30}=\frac{-12}{60} =-1/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*30}=\frac{0}{60} =0 $
| 15–2x=75 | | 31=10j-9 | | 2y-6=6× | | W=98w+115(15-w) | | 8=17-3h | | 5x2-30x=0 | | 49=3s+16 | | 1=4-3h | | 13w+39w2=0 | | 0=8x-70 | | 9=19-5v | | 5y^2+6=-86 | | 7=5r-13 | | 0.8x-1.4=-9.4 | | 8k+72k2=0 | | ((1)/(2))^(7x+1)=-9 | | 1/4x+14=34 | | A(x)=x(300-2x) | | 9f2-27f=0 | | 6=8-2h | | 9÷7x=51 | | 46=2d+10 | | Y=1/20x^2+11/10x | | 4y+28y2=0 | | 10=c-4 | | 16=18-b | | 0.4q+0.04(5-7q)=0.28(2) | | 3n=924 | | 31=3k+4 | | 9h2-36h=0 | | 60+x+3x=120 | | 50=4y+22 |