If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+7t-3=0
a = 6; b = 7; c = -3;
Δ = b2-4ac
Δ = 72-4·6·(-3)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-11}{2*6}=\frac{-18}{12} =-1+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+11}{2*6}=\frac{4}{12} =1/3 $
| r-5/3r^2=1/3r^2+1/2r | | /4e=27 | | 6(t-2)=-3t-93 | | N+56=29n | | 3t+1/7=t+5/14+t-3/14 | | x-8=5( | | -4x+8x-9=4(x-5)-4 | | K=7m^2-m+4 | | 16-16=6x | | -6(v+2)+2v+6=6v+12 | | 4x2+32x=0 | | 1/4(k-1)=1 | | x2+(x+1)2=(2x−1)(x−3) | | 3n^2-13=10n | | −4(3x+2)−(x−7)=4 | | 4x2-13x-152=0 | | x2-21x+90=0 | | 5x²+7x-3=02 | | 6-(7-a)+3=10a-5 | | 5x²+7x-3=0 | | 6(t-2)=3t-93 | | 8x+6=9+5x | | X+17/x+1=2 | | -5(h-5)=-9h-7 | | 2m+24=m^2 | | 3x+76=100 | | 10(p-8)=4p-104 | | 6-(7-a+3)=10a-5 | | 40+95+x=180 | | (5-x)(5x-1)=0 | | 3t+1/2=t+6/4+t-4/4 | | -15-2x=-3x-12 |