If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2-7t-3=0
a = 6; b = -7; c = -3;
Δ = b2-4ac
Δ = -72-4·6·(-3)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-11}{2*6}=\frac{-4}{12} =-1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+11}{2*6}=\frac{18}{12} =1+1/2 $
| 17x-14=105 | | 7p/15=35/3 | | 8.3=0.136x+2.18 | | x/4=2/3=x/6 | | 3y×7×4=252 | | x/2+4=33 | | 5(3k-5)-4(7k+10)=0 | | r-25=-9 | | 5y-236=456 | | 12a+9=3 | | x^2+4x-5x/3-1=0 | | 6-x÷2=4 | | 25x-25=16x-16 | | 4x+20=6x-2 | | 3x-9=5x-25 | | 14(8+11/16)+y=121 | | 4x-5x/3=0 | | 14(11/16)+y=121 | | -18x-14x+121=-157 | | 6/s+5+s-5/2=3 | | 5x2+24x=28 | | 2(x+9)=9x-2 | | 75x+1750-35x=3190 | | 6x^2+2x=504 | | 3x+4x=110° | | (20x2+15x+13)+(-19x2+17x+5)=0 | | -0.27(x-2010)=16(.18)-5.2 | | (4x2-6x+7)+(-19x2+(7x+5)=) | | 6x-8+28-7x=4x | | 2(x-3)=8-3(x-2) | | 612=0.136x | | 612=0.1236x |