6u+38=8u(u+5)

Simple and best practice solution for 6u+38=8u(u+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6u+38=8u(u+5) equation:



6u+38=8u(u+5)
We move all terms to the left:
6u+38-(8u(u+5))=0
We calculate terms in parentheses: -(8u(u+5)), so:
8u(u+5)
We multiply parentheses
8u^2+40u
Back to the equation:
-(8u^2+40u)
We get rid of parentheses
-8u^2+6u-40u+38=0
We add all the numbers together, and all the variables
-8u^2-34u+38=0
a = -8; b = -34; c = +38;
Δ = b2-4ac
Δ = -342-4·(-8)·38
Δ = 2372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2372}=\sqrt{4*593}=\sqrt{4}*\sqrt{593}=2\sqrt{593}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{593}}{2*-8}=\frac{34-2\sqrt{593}}{-16} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{593}}{2*-8}=\frac{34+2\sqrt{593}}{-16} $

See similar equations:

| x*0.4=36 | | t−13=5 | | 4.4=2y | | 6/3c+20/3=68/3 | | (-4n+6)(4)= | | x-2=x+3=5x-10 | | z-9=-10 | | r−100=-37 | | (x−2)=4x | | y+5.4=19.9 | | -21x+15=-5x-17 | | f+7.48=12.48 | | -9x+2=9x-2 | | x-4=2x-12=3x-5 | | c−3=3 | | n-8=10+.5n | | x-4+2x-12=3x-5 | | 3v-16=17 | | X-8=1/2x+10 | | y=95-8 | | (x-3)(x+11)=2x | | g+-531=329 | | -5=f-26 | | -30x-12=18x+36 | | 2=0n+1n+4 | | 29z=290 | | 2(x2+7x+65)=0 | | 49*x2=121 | | d/26=5 | | 5(4+t)=5+20 | | f+-982=-233 | | -4=-2n-1+1n |

Equations solver categories