If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6v^2+5v+1=0
a = 6; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·6·1
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*6}=\frac{-6}{12} =-1/2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*6}=\frac{-4}{12} =-1/3 $
| P=7.5n-(2.25n+15) | | g+1/4=29/10 | | y=17-2(2) | | 12n-8n-3n=13 | | z+119=-812 | | 8t2+7t+4=0 | | 10(6x-2)=100x | | 0.4+4x=0.7-2x | | 12n–8n–3n=13 | | 8w+13+1=w-26+47 | | T(10)=-2+24e^-0.045(10) | | 7a+19a+-19a+9a=16 | | -4.9t^2+24t+8=0 | | 0.4+4x=0.4+2x | | 3x+13=x+39 | | 5g-8=22 | | 9(c+10)=7(c+8) | | 51/6=x-7/8 | | -16x^2+860=0 | | 10+12v=v+21 | | 8.1x+9=5.1-3 | | (15-3x)+(2x-5)+x=20 | | -5/2y-3/2=6y-3/5 | | -12y+15y+-3=18 | | 8u-20=6u | | 5g+-8=22 | | 2y+10=y+25 | | -16t^2+860=0 | | Y+25=2y+10 | | 0.5+2.5x=0.8-2x | | H=-16t^-95t | | 6x-10x+3x=17 |