6x(124+x)=797

Simple and best practice solution for 6x(124+x)=797 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x(124+x)=797 equation:


Simplifying
6x(124 + x) = 797
(124 * 6x + x * 6x) = 797
(744x + 6x2) = 797

Solving
744x + 6x2 = 797

Solving for variable 'x'.

Reorder the terms:
-797 + 744x + 6x2 = 797 + -797

Combine like terms: 797 + -797 = 0
-797 + 744x + 6x2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-132.8333333 + 124x + x2 = 0

Move the constant term to the right:

Add '132.8333333' to each side of the equation.
-132.8333333 + 124x + 132.8333333 + x2 = 0 + 132.8333333

Reorder the terms:
-132.8333333 + 132.8333333 + 124x + x2 = 0 + 132.8333333

Combine like terms: -132.8333333 + 132.8333333 = 0.0000000
0.0000000 + 124x + x2 = 0 + 132.8333333
124x + x2 = 0 + 132.8333333

Combine like terms: 0 + 132.8333333 = 132.8333333
124x + x2 = 132.8333333

The x term is 124x.  Take half its coefficient (62).
Square it (3844) and add it to both sides.

Add '3844' to each side of the equation.
124x + 3844 + x2 = 132.8333333 + 3844

Reorder the terms:
3844 + 124x + x2 = 132.8333333 + 3844

Combine like terms: 132.8333333 + 3844 = 3976.8333333
3844 + 124x + x2 = 3976.8333333

Factor a perfect square on the left side:
(x + 62)(x + 62) = 3976.8333333

Calculate the square root of the right side: 63.062138667

Break this problem into two subproblems by setting 
(x + 62) equal to 63.062138667 and -63.062138667.

Subproblem 1

x + 62 = 63.062138667 Simplifying x + 62 = 63.062138667 Reorder the terms: 62 + x = 63.062138667 Solving 62 + x = 63.062138667 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-62' to each side of the equation. 62 + -62 + x = 63.062138667 + -62 Combine like terms: 62 + -62 = 0 0 + x = 63.062138667 + -62 x = 63.062138667 + -62 Combine like terms: 63.062138667 + -62 = 1.062138667 x = 1.062138667 Simplifying x = 1.062138667

Subproblem 2

x + 62 = -63.062138667 Simplifying x + 62 = -63.062138667 Reorder the terms: 62 + x = -63.062138667 Solving 62 + x = -63.062138667 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-62' to each side of the equation. 62 + -62 + x = -63.062138667 + -62 Combine like terms: 62 + -62 = 0 0 + x = -63.062138667 + -62 x = -63.062138667 + -62 Combine like terms: -63.062138667 + -62 = -125.062138667 x = -125.062138667 Simplifying x = -125.062138667

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.062138667, -125.062138667}

See similar equations:

| 5(68+x)=530 | | 5(68x)=530 | | 5(68-x)=530 | | 5x(68-x)=530 | | x^2+5x-31=-35 | | r+27=19 | | 10x^2-11=5x^2+6x | | 0.121=0.00269+x | | x+5x+70=1588 | | 630x+45=54x+27 | | 3(.5+b*.25)=b | | x+(x+30)=36 | | 175(1.5+630*b)=630 | | -2-3x-4=6x-17-1x | | 3y+3y=-108 | | 2x-0.35x=-8.61 | | -6x=-20-8x | | x^7-1=x^9+1 | | 63793.75-56513.67= | | b+1=18 | | 159+4x-109=686 | | 225x^2-144y^2= | | x+4x-109=686 | | 6t^2-t-2=0 | | 4x-109x=686 | | (5+u)(5u+8)= | | (n+9)6=7(n-4) | | 2(x+3)=x+6 | | 217+0.2*x=x | | 4x=686 | | x*0.2=217 | | (6+n)5=9n-2 |

Equations solver categories