If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x(2x-1)=2
We move all terms to the left:
6x(2x-1)-(2)=0
We multiply parentheses
12x^2-6x-2=0
a = 12; b = -6; c = -2;
Δ = b2-4ac
Δ = -62-4·12·(-2)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{33}}{2*12}=\frac{6-2\sqrt{33}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{33}}{2*12}=\frac{6+2\sqrt{33}}{24} $
| 16^1.5=x | | 5z+2-2z=2+2z+7 | | x5+3x+24+8x-40=180 | | 3x+2x+15+90=180 | | 0.2x+22=2x | | 2t^2-12t=12 | | ¼(y-8)=-5 | | 7^p-5=(-7) | | ()x(4)=-48 | | 2(x+5)=4x+3-2x+7 | | (3x-1)*(7x+7)=0 | | 9(1-x)=2(1+2x)+2 | | 20=6+x/2 | | 5^3u-5^3=5^4u-2^3 | | -6(7r+2)=-12+2r | | -24+8p=-6(p-2)-8 | | .3x-9.1=10 | | 4/5+n=1/2 | | 6-x-4=14+8-6x-5 | | 6+1-5n+7=8-4n | | -12=-3/4u | | 223x=8864 | | 223x=4 | | -110=-8(7a-5)+6a | | 183=-3(-5+5v)-6v | | 277x=8864 | | 2=5+n+2n | | 2=5+2n | | 252y=7056 | | 5-|x+3|=-5 | | 10x=3x+9 | | 5(3+x)=2(x+6) |