6x(3-4x)=-x(5x-1)

Simple and best practice solution for 6x(3-4x)=-x(5x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x(3-4x)=-x(5x-1) equation:



6x(3-4x)=-x(5x-1)
We move all terms to the left:
6x(3-4x)-(-x(5x-1))=0
We add all the numbers together, and all the variables
6x(-4x+3)-(-x(5x-1))=0
We multiply parentheses
-24x^2+18x-(-x(5x-1))=0
We calculate terms in parentheses: -(-x(5x-1)), so:
-x(5x-1)
We multiply parentheses
-5x^2+1x
We add all the numbers together, and all the variables
-5x^2+x
Back to the equation:
-(-5x^2+x)
We get rid of parentheses
-24x^2+5x^2-x+18x=0
We add all the numbers together, and all the variables
-19x^2+17x=0
a = -19; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·(-19)·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*-19}=\frac{-34}{-38} =17/19 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*-19}=\frac{0}{-38} =0 $

See similar equations:

| -8)+p=10 | | 67x5= | | 7×+21y=(×+) | | 3+2(m-4)=14 | | 8×2n+²=16 | | 0.5x+3=0.75x7.75 | | 3(n-5=21 | | 19y-(15-y)=-275 | | 3x-50=103x | | 15+5(x-2)=5 | | 17x^2+17=-8x+5+11x^2 | | 3p-5=21 | | 65+30x=35+45x | | 4x+2x+x+8=8× | | y2-13=87 | | C+8=b | | a2=0 | | 2z2=50 | | b2-169=0 | | x2-1=10 | | -9*1a= | | h2-12=24 | | 3x-4=-2x-4 | | 3y-5/4=4 | | -18+p=10 | | 3s+5=0 | | 2z+16=12 | | X²+10x=1 | | 5e^2+9e=-4 | | (4x-8)^2+2(4x-8)+1=0 | | X=100+2y | | 4x-4/7+5x+1/6=8/15 |

Equations solver categories