6x(4+2x)=2x-(7x-4)+5

Simple and best practice solution for 6x(4+2x)=2x-(7x-4)+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x(4+2x)=2x-(7x-4)+5 equation:



6x(4+2x)=2x-(7x-4)+5
We move all terms to the left:
6x(4+2x)-(2x-(7x-4)+5)=0
We add all the numbers together, and all the variables
6x(2x+4)-(2x-(7x-4)+5)=0
We multiply parentheses
12x^2+24x-(2x-(7x-4)+5)=0
We calculate terms in parentheses: -(2x-(7x-4)+5), so:
2x-(7x-4)+5
We get rid of parentheses
2x-7x+4+5
We add all the numbers together, and all the variables
-5x+9
Back to the equation:
-(-5x+9)
We get rid of parentheses
12x^2+24x+5x-9=0
We add all the numbers together, and all the variables
12x^2+29x-9=0
a = 12; b = 29; c = -9;
Δ = b2-4ac
Δ = 292-4·12·(-9)
Δ = 1273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{1273}}{2*12}=\frac{-29-\sqrt{1273}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{1273}}{2*12}=\frac{-29+\sqrt{1273}}{24} $

See similar equations:

| 2.9x-16.6=-5 | | 2a2+6a+18=0 | | 12a=300 | | 3x-7(x)=10 | | 9t=t-6 | | 5x+4/3-4x=1/5 | | (3x-1)=12 | | (6y+4)(3y-5)=4 | | 10(5w+9)–2w+10=0 | | -6+x=-8x-15 | | 16y2+18y=0 | | 2/3b+5=20- | | 5x^2+10x-36x=+36 | | -7x+9=21 | | 180=70+21x+5 | | 12x+14-8x=94 | | 180=10x+11x+12 | | 3n-0.35=$3.45 | | X/15=6/9x= | | -3(5x-10)x=-66 | | 3n-0.35=3.45 | | 11x+12=180+10x | | (2(x+6))/4=4x-2 | | T(n)=2.5n-10 | | 11x+10x=12 | | 3(u-7)-6u=-24 | | 10x=11x+12 | | 5x-4=+2x | | 11x+12=10x+180 | | 1.8(10-1)=h | | (6y+4)(3y-5)=0 | | -85=5(k+-4) |

Equations solver categories