If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x(4x-10)=180
We move all terms to the left:
6x(4x-10)-(180)=0
We multiply parentheses
24x^2-60x-180=0
a = 24; b = -60; c = -180;
Δ = b2-4ac
Δ = -602-4·24·(-180)
Δ = 20880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20880}=\sqrt{144*145}=\sqrt{144}*\sqrt{145}=12\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-12\sqrt{145}}{2*24}=\frac{60-12\sqrt{145}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+12\sqrt{145}}{2*24}=\frac{60+12\sqrt{145}}{48} $
| 12.56+(.08*x)=13.31-(.15*x) | | 1/6a-1/3=-10 | | |x+6|-5=0 | | 4g−10=2 | | x²+4x+40-380=0 | | s3+4=7 | | -4n-2n=-16-2n | | (2x-1)/5=2(-7+7) | | x²+4x+40=380 | | 20/100=x/16 | | .50x-12=12 | | x/2/3x=11 | | 3(0.5x+6)=9 | | 6x=+12=11x-33 | | -25=12+r | | 5(x+-6)=2(x+3) | | 6x-18=132 | | 20(x1/8)=3/3/4 | | -9+p=9-5 | | 3/7(x-8)=1/7(2x+4) | | 8x+3x=650 | | 4y+2=−1/3(8−12y | | -4(x+1)=4-4x | | 3m|2/3=7 | | (1/4x)-(1/5)(x-5)=5x | | 6x-12+x+31=180 | | (X)^2+(-4x)^2=153 | | 0.5(28+2x)=5(x-2) | | 2p-4=1+3p | | 0.25x+9.1=11.6 | | 11/7x=31/2 | | 8s−(5s+6)=(1/2)(20+6s) |