If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x(x+10)=60
We move all terms to the left:
6x(x+10)-(60)=0
We multiply parentheses
6x^2+60x-60=0
a = 6; b = 60; c = -60;
Δ = b2-4ac
Δ = 602-4·6·(-60)
Δ = 5040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5040}=\sqrt{144*35}=\sqrt{144}*\sqrt{35}=12\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-12\sqrt{35}}{2*6}=\frac{-60-12\sqrt{35}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+12\sqrt{35}}{2*6}=\frac{-60+12\sqrt{35}}{12} $
| 2.4=t−1 | | d−8.41=7.69 | | -9/11=x-1 | | 8x+20=11x-19 | | p3=4 | | y+24=9y | | z−2.5=9 | | 4.13=b3 | | -7(-4x)(8-7x)=0 | | j+11.33=18.7 | | a+35=3a | | 2g=16.36 | | (x-5)+7=49 | | r3=2 | | p-30=2p | | 3=t−3 | | 2(3u+7)=-4(3- | | m−5.8=4 | | 12-x=-17 | | z-33=234 | | 250=4x+5x | | 3s=8.67 | | h+4.53=17.22 | | 15=3k-12 | | 1.05=h−1.95 | | 9(2+c)=8(c-5) | | -2x-24=4x | | -2(3x+2)-2x+4=−40 | | y2=1.4 | | (6−i)+(7+3i)=0 | | 2x+x+7=180 | | -7x-154=136-14x |