6x(x+2)+5=3x(x+1)

Simple and best practice solution for 6x(x+2)+5=3x(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x(x+2)+5=3x(x+1) equation:


Simplifying
6x(x + 2) + 5 = 3x(x + 1)

Reorder the terms:
6x(2 + x) + 5 = 3x(x + 1)
(2 * 6x + x * 6x) + 5 = 3x(x + 1)
(12x + 6x2) + 5 = 3x(x + 1)

Reorder the terms:
5 + 12x + 6x2 = 3x(x + 1)

Reorder the terms:
5 + 12x + 6x2 = 3x(1 + x)
5 + 12x + 6x2 = (1 * 3x + x * 3x)
5 + 12x + 6x2 = (3x + 3x2)

Solving
5 + 12x + 6x2 = 3x + 3x2

Solving for variable 'x'.

Reorder the terms:
5 + 12x + -3x + 6x2 + -3x2 = 3x + 3x2 + -3x + -3x2

Combine like terms: 12x + -3x = 9x
5 + 9x + 6x2 + -3x2 = 3x + 3x2 + -3x + -3x2

Combine like terms: 6x2 + -3x2 = 3x2
5 + 9x + 3x2 = 3x + 3x2 + -3x + -3x2

Reorder the terms:
5 + 9x + 3x2 = 3x + -3x + 3x2 + -3x2

Combine like terms: 3x + -3x = 0
5 + 9x + 3x2 = 0 + 3x2 + -3x2
5 + 9x + 3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
5 + 9x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
1.666666667 + 3x + x2 = 0

Move the constant term to the right:

Add '-1.666666667' to each side of the equation.
1.666666667 + 3x + -1.666666667 + x2 = 0 + -1.666666667

Reorder the terms:
1.666666667 + -1.666666667 + 3x + x2 = 0 + -1.666666667

Combine like terms: 1.666666667 + -1.666666667 = 0.000000000
0.000000000 + 3x + x2 = 0 + -1.666666667
3x + x2 = 0 + -1.666666667

Combine like terms: 0 + -1.666666667 = -1.666666667
3x + x2 = -1.666666667

The x term is 3x.  Take half its coefficient (1.5).
Square it (2.25) and add it to both sides.

Add '2.25' to each side of the equation.
3x + 2.25 + x2 = -1.666666667 + 2.25

Reorder the terms:
2.25 + 3x + x2 = -1.666666667 + 2.25

Combine like terms: -1.666666667 + 2.25 = 0.583333333
2.25 + 3x + x2 = 0.583333333

Factor a perfect square on the left side:
(x + 1.5)(x + 1.5) = 0.583333333

Calculate the square root of the right side: 0.763762616

Break this problem into two subproblems by setting 
(x + 1.5) equal to 0.763762616 and -0.763762616.

Subproblem 1

x + 1.5 = 0.763762616 Simplifying x + 1.5 = 0.763762616 Reorder the terms: 1.5 + x = 0.763762616 Solving 1.5 + x = 0.763762616 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.5' to each side of the equation. 1.5 + -1.5 + x = 0.763762616 + -1.5 Combine like terms: 1.5 + -1.5 = 0.0 0.0 + x = 0.763762616 + -1.5 x = 0.763762616 + -1.5 Combine like terms: 0.763762616 + -1.5 = -0.736237384 x = -0.736237384 Simplifying x = -0.736237384

Subproblem 2

x + 1.5 = -0.763762616 Simplifying x + 1.5 = -0.763762616 Reorder the terms: 1.5 + x = -0.763762616 Solving 1.5 + x = -0.763762616 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.5' to each side of the equation. 1.5 + -1.5 + x = -0.763762616 + -1.5 Combine like terms: 1.5 + -1.5 = 0.0 0.0 + x = -0.763762616 + -1.5 x = -0.763762616 + -1.5 Combine like terms: -0.763762616 + -1.5 = -2.263762616 x = -2.263762616 Simplifying x = -2.263762616

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.736237384, -2.263762616}

See similar equations:

| 9x=12y+8 | | 6x^2-8x+216=0 | | 12x=-9y+4 | | 12y=-9x+2 | | 9y=12x+5 | | 3x-1*5=7 | | x-8.1=-3.3 | | X^2+9x=1 | | X+8*4=6 | | m+26=18 | | -3x^2=-5 | | 7.96x+1=0 | | p-7/12=-16 | | -4-3m+m^2= | | 4x^2-9x+9=0 | | 4(1)-4y=24 | | 30x+2y-12x+6y= | | c^2-15c+56= | | 2x^3=-16 | | 2m*3=24 | | x^3+12x^2+45x=0 | | b^2-9b+8= | | y^2-6y+8= | | w^2-w-6= | | T*6=18 | | s^2+4s-12= | | 3(2x-9)+22=-60 | | g^2+3g-10= | | -5k=3(6-8) | | y^2-5y-6= | | Y=330+26x | | x^2+10x-291=0 |

Equations solver categories