6x(x+3)=(2x+12)(x+3)

Simple and best practice solution for 6x(x+3)=(2x+12)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x(x+3)=(2x+12)(x+3) equation:



6x(x+3)=(2x+12)(x+3)
We move all terms to the left:
6x(x+3)-((2x+12)(x+3))=0
We multiply parentheses
6x^2+18x-((2x+12)(x+3))=0
We multiply parentheses ..
6x^2-((+2x^2+6x+12x+36))+18x=0
We calculate terms in parentheses: -((+2x^2+6x+12x+36)), so:
(+2x^2+6x+12x+36)
We get rid of parentheses
2x^2+6x+12x+36
We add all the numbers together, and all the variables
2x^2+18x+36
Back to the equation:
-(2x^2+18x+36)
We add all the numbers together, and all the variables
6x^2+18x-(2x^2+18x+36)=0
We get rid of parentheses
6x^2-2x^2+18x-18x-36=0
We add all the numbers together, and all the variables
4x^2-36=0
a = 4; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·4·(-36)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*4}=\frac{-24}{8} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*4}=\frac{24}{8} =3 $

See similar equations:

| 5+8r-8=21 | | 2(5x+2)=-3(5x-4) | | 2x+15=91 | | -58-11x=-16x+2 | | 3(z+2)=2+8 | | x-2/4=20 | | 0−11b+7=40 | | 14n-17=16n-27 | | 7x=22x | | 70=7w | | 4p-6=10p-24 | | 24=32−4t | | 6x+20=4x+32 | | 4(x-2)-3(3-x)=6x+6-3+3x | | 4j-20=16 | | 6b–23=59 | | 6b–23=59 | | 1xX5xX0.5=1000 | | X+4÷-3=6-x | | j3 + 14 = 17 | | 5(5x-6)=97.5 | | 8=10(0.95^x) | | 6x=208 | | 10x+5=3(2x+5) | | 2.9^x=9.7 | | 14x+12x+3=5 | | 2u+28=6u-12 | | 2=10(0.95^x) | | 4(7-3x)=7(=-2x) | | 38=3c−37 | | 4b-b+5=8 | | 3x+4=9x+-8 |

Equations solver categories