If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x*6x+9x-2=-(2x*2x-2x-7)
We move all terms to the left:
6x*6x+9x-2-(-(2x*2x-2x-7))=0
We add all the numbers together, and all the variables
6x*6x+9x-(-(-2x+2x*2x-7))-2=0
We add all the numbers together, and all the variables
9x+6x*6x-(-(-2x+2x*2x-7))-2=0
Wy multiply elements
36x^2+9x-(-(-2x+2x*2x-7))-2=0
We calculate terms in parentheses: -(-(-2x+2x*2x-7)), so:We get rid of parentheses
-(-2x+2x*2x-7)
We get rid of parentheses
2x-2x*2x+7
Wy multiply elements
-4x^2+2x+7
Back to the equation:
-(-4x^2+2x+7)
36x^2+4x^2-2x+9x-7-2=0
We add all the numbers together, and all the variables
40x^2+7x-9=0
a = 40; b = 7; c = -9;
Δ = b2-4ac
Δ = 72-4·40·(-9)
Δ = 1489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{1489}}{2*40}=\frac{-7-\sqrt{1489}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{1489}}{2*40}=\frac{-7+\sqrt{1489}}{80} $
| -2y-11=8y+19 | | 3(x+4)=9x+12 | | 5x/3+2.15/3=4x+60x= | | 7x=13x÷12 | | 3/8x+5/16x=1/4 | | 1/6(2x+112)=5x | | -5n=n-4 | | 2(y+3)+8=14 | | 1/8x=41/2 | | 4.3x-5.2+7x=7.3x-22.4 | | -45+y/y=-5 | | −6m−8=24 | | 8(x-4)=6x-16 | | 7x-21=5x-7 | | 5x+14=-4x-16 | | 2^x+2^(x+3)=9 | | -2(p-20)=60 | | 5x+2.5/3=4x+60x= | | 4(w+1=24 | | 2^x+2^x+3=9 | | 5.4=3.8+t | | z/5-5=13 | | 10(x-3)=6x+2 | | 3x+2=(2x-13)/3 | | 3x-(5)=-2 | | e-7.1=-4.2 | | 6b-27=3(5b-2) | | 4-7k=3-7k | | m/5=3/10 | | 7(x-1)=4x-11 | | 2/3(6x-9)-4(3/2x+2)=-18 | | 10-2x=5-1x |