6x+(1/2x-8)=3x-31

Simple and best practice solution for 6x+(1/2x-8)=3x-31 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x+(1/2x-8)=3x-31 equation:



6x+(1/2x-8)=3x-31
We move all terms to the left:
6x+(1/2x-8)-(3x-31)=0
Domain of the equation: 2x-8)!=0
x∈R
We get rid of parentheses
6x+1/2x-3x-8+31=0
We multiply all the terms by the denominator
6x*2x-3x*2x-8*2x+31*2x+1=0
Wy multiply elements
12x^2-6x^2-16x+62x+1=0
We add all the numbers together, and all the variables
6x^2+46x+1=0
a = 6; b = 46; c = +1;
Δ = b2-4ac
Δ = 462-4·6·1
Δ = 2092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2092}=\sqrt{4*523}=\sqrt{4}*\sqrt{523}=2\sqrt{523}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-2\sqrt{523}}{2*6}=\frac{-46-2\sqrt{523}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+2\sqrt{523}}{2*6}=\frac{-46+2\sqrt{523}}{12} $

See similar equations:

| 2/3(t+5=8 | | 20=5(s-79) | | -5(x-4)=5(x-6) | | -3+g=8 | | 7=8x10+5x | | t+781=900 | | 2(6-2n)=-2(1-5n) | | 3.5=18+x | | -7(2x+8)=-112 | | 9y-6y-12=37.17 | | 2x+6-3x=4 | | s+10+3s+13+2s+1=180 | | –17=–7+–2m | | 3-5k+6k=-9-2k | | 6=w-3w-12 | | 8(u-77)=88 | | 12+2x=-6x+23 | | 1/2(x-2)=-8 | | 3(5x+4)-20=13x+4 | | x2-3=110+8 | | x-12=-52x | | 11+6n=4n-5 | | 61+a+31+3a=180 | | 27+3f=84 | | 5-(2y+4)=3(y-8) | | 0.35(d+4)=0.25(d-6) | | 9x+7+5=30 | | 3/7x+2=4+1/7x | | 42=y-7 | | x2+7=40-8 | | 3x+3=28+x | | 3(3x+-23)=28 |

Equations solver categories