6x+2(x+4)=1/3x+2

Simple and best practice solution for 6x+2(x+4)=1/3x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x+2(x+4)=1/3x+2 equation:



6x+2(x+4)=1/3x+2
We move all terms to the left:
6x+2(x+4)-(1/3x+2)=0
Domain of the equation: 3x+2)!=0
x∈R
We multiply parentheses
6x+2x-(1/3x+2)+8=0
We get rid of parentheses
6x+2x-1/3x-2+8=0
We multiply all the terms by the denominator
6x*3x+2x*3x-2*3x+8*3x-1=0
Wy multiply elements
18x^2+6x^2-6x+24x-1=0
We add all the numbers together, and all the variables
24x^2+18x-1=0
a = 24; b = 18; c = -1;
Δ = b2-4ac
Δ = 182-4·24·(-1)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{105}}{2*24}=\frac{-18-2\sqrt{105}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{105}}{2*24}=\frac{-18+2\sqrt{105}}{48} $

See similar equations:

| 5x+17=-2x-4 | | 12x+23=251 | | -8-v=5+3v+3v | | 2x=-3(-3+5) | | 12(x+7)=24(x-5) | | 3x-1/3=2/5 | | 15=z−3 | | 0=8x^2-7 | | (4x-3)^=36 | | -3/4y+24=21 | | -9t=-4(4t+10)-2 | | 3x^2-95=0 | | 74=t+43 | | 2x-2+x=x-6+9x | | 3-(s-9)=3 | | ¾(x-2)=12 | | Y=x^2-2x+87/10 | | 11=q+9 | | 2(j+-6)=6 | | 180=70+6x | | a3–=5≤1 | | a3–5≤=1 | | 20(x+2)=5x+10 | | k+22+6k=43 | | g+53=88 | | 4x+.10=22 | | 13+3y=4 | | 3x-35+7x-15=360 | | 3x-4x+5x=24 | | 6x^2+4x-33=0 | | 4(4x+4)=-5(4x-4)-3x | | 4p+19–7p=–12p–8 |

Equations solver categories