6x+7=(x+2)(x+2)

Simple and best practice solution for 6x+7=(x+2)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x+7=(x+2)(x+2) equation:



6x+7=(x+2)(x+2)
We move all terms to the left:
6x+7-((x+2)(x+2))=0
We multiply parentheses ..
-((+x^2+2x+2x+4))+6x+7=0
We calculate terms in parentheses: -((+x^2+2x+2x+4)), so:
(+x^2+2x+2x+4)
We get rid of parentheses
x^2+2x+2x+4
We add all the numbers together, and all the variables
x^2+4x+4
Back to the equation:
-(x^2+4x+4)
We add all the numbers together, and all the variables
6x-(x^2+4x+4)+7=0
We get rid of parentheses
-x^2+6x-4x-4+7=0
We add all the numbers together, and all the variables
-1x^2+2x+3=0
a = -1; b = 2; c = +3;
Δ = b2-4ac
Δ = 22-4·(-1)·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4}{2*-1}=\frac{-6}{-2} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4}{2*-1}=\frac{2}{-2} =-1 $

See similar equations:

| 16x^2+50x=-25 | | 2101/8=x*51/8*51/8 | | 126=(4x+1)(x+1)x | | 49-0.666x=32-0.1666x | | 1/4x-10=1/6x-5 | | 3x+2x-11=9 | | -25x-17-18x=24 | | 3w+-10=22 | | 2x12=+33 | | -2d—3d=1/6+1/3 | | 0.07(3t+1)=0.21(t+4)-0.77 | | 8x+3-10x=(-2)(x-2)+3 | | 2x+5(3x-2)^1/2=0 | | 350+.04x=126+.11x | | 12b+24=18b | | 350+.04x=662 | | f(4)=3 | | 4x^2-50=1 | | 126+.11x=896 | | (3/4)x+17=23 | | v=v+52 | | (.1x-22)+(.3x-54)=90 | | 9x^2-6=1 | | .1x-22=90-x | | 11=8x-4 | | -8k-1=95 | | -5(n-7)=-6n | | -17(y-2)=-7y+64 | | b^2-10b=96 | | 26.75x=140+630+9.25x | | t=2.5(6.4−t) | | -6+7x=-83 |

Equations solver categories