If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6x + -1(2x + -1)(2x + 1) = 2 + -1(3 + 2x) Reorder the terms: 6x + -1(-1 + 2x)(2x + 1) = 2 + -1(3 + 2x) Reorder the terms: 6x + -1(-1 + 2x)(1 + 2x) = 2 + -1(3 + 2x) Multiply (-1 + 2x) * (1 + 2x) 6x + -1(-1(1 + 2x) + 2x * (1 + 2x)) = 2 + -1(3 + 2x) 6x + -1((1 * -1 + 2x * -1) + 2x * (1 + 2x)) = 2 + -1(3 + 2x) 6x + -1((-1 + -2x) + 2x * (1 + 2x)) = 2 + -1(3 + 2x) 6x + -1(-1 + -2x + (1 * 2x + 2x * 2x)) = 2 + -1(3 + 2x) 6x + -1(-1 + -2x + (2x + 4x2)) = 2 + -1(3 + 2x) Combine like terms: -2x + 2x = 0 6x + -1(-1 + 0 + 4x2) = 2 + -1(3 + 2x) 6x + -1(-1 + 4x2) = 2 + -1(3 + 2x) 6x + (-1 * -1 + 4x2 * -1) = 2 + -1(3 + 2x) 6x + (1 + -4x2) = 2 + -1(3 + 2x) Reorder the terms: 1 + 6x + -4x2 = 2 + -1(3 + 2x) 1 + 6x + -4x2 = 2 + (3 * -1 + 2x * -1) 1 + 6x + -4x2 = 2 + (-3 + -2x) Combine like terms: 2 + -3 = -1 1 + 6x + -4x2 = -1 + -2x Solving 1 + 6x + -4x2 = -1 + -2x Solving for variable 'x'. Reorder the terms: 1 + 1 + 6x + 2x + -4x2 = -1 + -2x + 1 + 2x Combine like terms: 1 + 1 = 2 2 + 6x + 2x + -4x2 = -1 + -2x + 1 + 2x Combine like terms: 6x + 2x = 8x 2 + 8x + -4x2 = -1 + -2x + 1 + 2x Reorder the terms: 2 + 8x + -4x2 = -1 + 1 + -2x + 2x Combine like terms: -1 + 1 = 0 2 + 8x + -4x2 = 0 + -2x + 2x 2 + 8x + -4x2 = -2x + 2x Combine like terms: -2x + 2x = 0 2 + 8x + -4x2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(1 + 4x + -2x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(1 + 4x + -2x2)' equal to zero and attempt to solve: Simplifying 1 + 4x + -2x2 = 0 Solving 1 + 4x + -2x2 = 0 Begin completing the square. Divide all terms by -2 the coefficient of the squared term: Divide each side by '-2'. -0.5 + -2x + x2 = 0 Move the constant term to the right: Add '0.5' to each side of the equation. -0.5 + -2x + 0.5 + x2 = 0 + 0.5 Reorder the terms: -0.5 + 0.5 + -2x + x2 = 0 + 0.5 Combine like terms: -0.5 + 0.5 = 0.0 0.0 + -2x + x2 = 0 + 0.5 -2x + x2 = 0 + 0.5 Combine like terms: 0 + 0.5 = 0.5 -2x + x2 = 0.5 The x term is -2x. Take half its coefficient (-1). Square it (1) and add it to both sides. Add '1' to each side of the equation. -2x + 1 + x2 = 0.5 + 1 Reorder the terms: 1 + -2x + x2 = 0.5 + 1 Combine like terms: 0.5 + 1 = 1.5 1 + -2x + x2 = 1.5 Factor a perfect square on the left side: (x + -1)(x + -1) = 1.5 Calculate the square root of the right side: 1.224744871 Break this problem into two subproblems by setting (x + -1) equal to 1.224744871 and -1.224744871.Subproblem 1
x + -1 = 1.224744871 Simplifying x + -1 = 1.224744871 Reorder the terms: -1 + x = 1.224744871 Solving -1 + x = 1.224744871 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = 1.224744871 + 1 Combine like terms: -1 + 1 = 0 0 + x = 1.224744871 + 1 x = 1.224744871 + 1 Combine like terms: 1.224744871 + 1 = 2.224744871 x = 2.224744871 Simplifying x = 2.224744871Subproblem 2
x + -1 = -1.224744871 Simplifying x + -1 = -1.224744871 Reorder the terms: -1 + x = -1.224744871 Solving -1 + x = -1.224744871 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = -1.224744871 + 1 Combine like terms: -1 + 1 = 0 0 + x = -1.224744871 + 1 x = -1.224744871 + 1 Combine like terms: -1.224744871 + 1 = -0.224744871 x = -0.224744871 Simplifying x = -0.224744871Solution
The solution to the problem is based on the solutions from the subproblems. x = {2.224744871, -0.224744871}Solution
x = {2.224744871, -0.224744871}
| -23.1/2.1= | | 1/8-3/20= | | -4.2(55)= | | 21-9=b | | 2/2x-5=3x+1 | | 6x+2(x+6)=23 | | 3-8t=48+t | | 23.1/-5..5= | | 3/2x-5=7 | | 2c+16/4=7 | | 2(-4x+3)=-x+27 | | 4d=2.50d | | (4x+x+7)/(x-4) | | 79.50=45-d | | -4x+1=4x-15 | | (x-4)/(x-8) | | x-58=7/8 | | -4.2(-5.5)= | | 25=-10 | | 97=-8a+1 | | -25=-10 | | 1,1/4*3/4= | | 3x+7-9=2(8-5) | | -3(3x-1)+4x=x+33 | | 11/4*3/4= | | 1/2(6x-8)=41 | | 72=18+x | | Y(x^7+2)+8(x^7+2)= | | 4=-10 | | 15x+5y=35 | | x^2+13x+42=72 | | 4x+4-6x-6=5x+4 |