If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x-19=(1/2)(12x-5-(2x+7
We move all terms to the left:
6x-19-((1/2)(12x-5-(2x+7)=0
Domain of the equation: 2)(12x-5-(2x+7)-19!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
2)(12x-(2x+7)!=24
x∈R
6x-((+1/2)(12x-5-(2x+7)-19=0
We multiply all the terms by the denominator
6x*2)(12x-(2x+7)-5-19-((+1=0
We add all the numbers together, and all the variables
6x*2)(12x-(2x+7)=0
Wy multiply elements
12x^2-(2x+7)=0
We get rid of parentheses
12x^2-2x-7=0
a = 12; b = -2; c = -7;
Δ = b2-4ac
Δ = -22-4·12·(-7)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{85}}{2*12}=\frac{2-2\sqrt{85}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{85}}{2*12}=\frac{2+2\sqrt{85}}{24} $
| (3k-5)^2=12 | | 85+85-16=y | | (2/3)r=11 | | F(6)=0.5x | | -17x+12=97 | | (14x+8)+(19x+7)=180 | | -6y+18=-1 | | 85-16=y | | F(-1)=5-3x | | 2.1=3r | | w+-280=-888 | | 3(3^x)=150 | | 0.1x-28+0.3x-48=180 | | x+4=5*4/2 | | -102x(5+2=0 | | 8^k/8^3=8^21 | | -⅘w=10 | | x=-100-(-205) | | 3^x-3=81 | | 17+5×=12k | | x+5=20/2 | | –4n+6=–9+n | | q+575=917 | | 8(2)x=32 | | -x/5-8=12 | | 7×n=42+9 | | 4t=-19.32 | | 4w2–5w+8=0 | | 1/20+1/q=1/10 | | 400+x-2=244 | | 2x+5+x+38+5x-29=180 | | -5=3+s |