6x-3(3x-4)=2x(x-7)-4

Simple and best practice solution for 6x-3(3x-4)=2x(x-7)-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x-3(3x-4)=2x(x-7)-4 equation:



6x-3(3x-4)=2x(x-7)-4
We move all terms to the left:
6x-3(3x-4)-(2x(x-7)-4)=0
We multiply parentheses
6x-9x-(2x(x-7)-4)+12=0
We calculate terms in parentheses: -(2x(x-7)-4), so:
2x(x-7)-4
We multiply parentheses
2x^2-14x-4
Back to the equation:
-(2x^2-14x-4)
We add all the numbers together, and all the variables
-3x-(2x^2-14x-4)+12=0
We get rid of parentheses
-2x^2-3x+14x+4+12=0
We add all the numbers together, and all the variables
-2x^2+11x+16=0
a = -2; b = 11; c = +16;
Δ = b2-4ac
Δ = 112-4·(-2)·16
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{249}}{2*-2}=\frac{-11-\sqrt{249}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{249}}{2*-2}=\frac{-11+\sqrt{249}}{-4} $

See similar equations:

| 8x+3x=11x^2 | | 6x=(6×12) | | 1.2x+3=9/3.2+6=8 | | 2(x+3)^2=-4x | | (7x)³+6-9=-12 | | 16+y=-35 | | -2(3a-4)-3a=44 | | 8m+9=7 | | 4x+8=9x+3. | | -13+(-7x)+(-5)=-7x+18+10 | | 3y-13y=8 | | 5x+(x,2)=11 | | 2(7b-6)+5b=121 | | 5x+x,2=11 | | 4-2x/9+X=1 | | 3x÷4=19 | | x+32+12=13+2x | | −15=x+5x+9 | | 15=-3+4d | | 2/3x+10=4/5 | | 2x-7+12=-13 | | .26=5/x | | 15m-22=-5m+18 | | 4/5x+10=2/3 | | 5x-9+74=8x+5 | | (x+4)+(2x-10)=2x+1 | | x+8x-(x-4)=4(x+3) | | 11-9+11x=6+11x+4 | | 36000=15+0.434x | | 46=2(3+3b)+4b | | 2(3x-9)=+12=3(10+x) | | X+(7)6/5x=470 |

Equations solver categories