If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+-60x+140=0
We add all the numbers together, and all the variables
6x^2-60x=0
a = 6; b = -60; c = 0;
Δ = b2-4ac
Δ = -602-4·6·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60}{2*6}=\frac{0}{12} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60}{2*6}=\frac{120}{12} =10 $
| 179=9-x | | (12-2y/3)^2-y+2y^2=12 | | 3m/m+2=1-m/m-4 | | 10x^2-5=-93 | | 3b-7=7b+1 | | 11/3x=1,122 | | (3/5x)+(2/3)=(1/3x)+(6/5) | | -x2+60x+-800=0 | | 4-3x=20+1x | | 3•t-8=-2 | | 7x-21-15+5x=11x-5 | | 12=7-7-3x+5x | | 10x5–3(10+5)= | | 420-20-21=19+3x | | -7=8x-1 | | 3x-12-8=12-x | | 7.85-2.5c=20.75 | | -35+7x-2x+20=10 | | -2-5n=4 | | 3^3x-5=9^x | | (X-15)+(6x-26)=(5x+7) | | (8)(t)=96 | | x+(x-3)=79 | | 483/8=b/7 | | 5x-50-2x-6=12 | | 5x-50-2x-6=1 | | 7•(-6)=m+4 | | 5•-7=b-5 | | 5•(-7)=b-(-5) | | 1/2=50/x | | 9=v/2 | | -2=y/6 |