If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+13x+6=0
a = 6; b = 13; c = +6;
Δ = b2-4ac
Δ = 132-4·6·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-5}{2*6}=\frac{-18}{12} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+5}{2*6}=\frac{-8}{12} =-2/3 $
| 2y=20−9=11 | | 4x^2+8x+4=0.95 | | 50w=385 | | (3/5x)+8=(1/4) | | x/18.22=59.67 | | 4x^2+8x-4=0.95 | | -17n+14=+19+3n | | (3x-2)+2x=15.5 | | 1/4(x-1)=3x/5-x | | 6(3x-1)+8=6 | | 56.52=2*3.14r | | 2v+5=4v | | 18*2+2w=46 | | 2/3y+6=6 | | 2(4x−11)+9=19 | | 13x/2=60x/2 | | x+7-(5x/8+10)=3 | | x-16/100x=16.40 | | (X)=x2-x4+1 | | 0=-16t^2+162t+62 | | (2x-1)/(3x+2)=0 | | 3x2-13x-10=0 | | 7x-2(2+x)=7+3(7+x | | x+16/100x=16.40 | | 25/5=50/x | | 0=-16^2+162t+62 | | 2x-(7x-5)=-25 | | -5+q+1-2q=q+1-3q | | 0=-5r-3+6r | | -2/4-1/8p=3/8p | | 6+h=-12 | | x-3/7=1/7 |