If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+13x-14=0
a = 6; b = 13; c = -14;
Δ = b2-4ac
Δ = 132-4·6·(-14)
Δ = 505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{505}}{2*6}=\frac{-13-\sqrt{505}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{505}}{2*6}=\frac{-13+\sqrt{505}}{12} $
| 13x2+4x+4=0 | | 14x2-x-11=0 | | 15x2+2x+1=0 | | 4x2+20x-3=0 | | 14x2+12x+17=0 | | 14x2+5x-18=0 | | 7x2-19x+13=0 | | 7x2-17x-20=0 | | 12f-14=41 | | 12x/2=36 | | 33-4=33-x | | 10x/2=26 | | 18x2-16x-18=0 | | 17x2-8x-20=0 | | 16x2-20x-8=0 | | 12x2+17x-19=0 | | 17x2-10x+13=0 | | 10x2-16x-20=0 | | 11x2+8x-17=0 | | 4x2-11x+8=0 | | 5b+13=2+1/3-4 | | -3/4x=75 | | 1.3xx4=24 | | x/7+28=31 | | 4f+2=6f+12 | | a/3-12=18 | | 15x2-3x-9=0 | | 4x2+7x-10=0 | | 13x2-16x+16=0 | | 2x2-2x-19=0 | | x2+8x-17=0 | | 19x2-15x+20=0 |