If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+14x-180=0
a = 6; b = 14; c = -180;
Δ = b2-4ac
Δ = 142-4·6·(-180)
Δ = 4516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4516}=\sqrt{4*1129}=\sqrt{4}*\sqrt{1129}=2\sqrt{1129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{1129}}{2*6}=\frac{-14-2\sqrt{1129}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{1129}}{2*6}=\frac{-14+2\sqrt{1129}}{12} $
| 3(p+10)=75 | | 5(c+8)=65 | | 20-3(x-3)=0 | | 7x+10=-42x | | 20–3(x-3)=0 | | 15+a=30+50 | | 5(7z+6)=33-9z | | (x+2)(x+4)-(2x+4)(x-5)=64 | | 62w+50=112 | | z÷50-3=7 | | 90m-20=700 | | 7x^2=2x^2+x-6 | | 7(8+3r)=-32 | | X^2+2^x-7x+10=0 | | X^3+2^x-7x+10=0 | | ×+2x+×=3× | | x^2-5x+4=1-x | | 2.5x=7/2 | | -2f+6f=9f | | 3/5c=9/10 | | 2x^2+11=4x+49 | | 8=-3n-5n | | 4m=7/8 | | 1-2x=-x^2= | | Y=250(1+0,2)y | | –6p–18=18 | | -9f-6+3=-18 | | 6x²-22x+12=0 | | x(1-2x)+3=4x | | 15=3(6x+8) | | 9x+4+4x-1+14x-6=180 | | v4+ 10=12 |