If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+16x-12=0
a = 6; b = 16; c = -12;
Δ = b2-4ac
Δ = 162-4·6·(-12)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{34}}{2*6}=\frac{-16-4\sqrt{34}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{34}}{2*6}=\frac{-16+4\sqrt{34}}{12} $
| 2x^2-2x+5/2=0 | | -12a=168 | | -1.6(2y+15)=—1.2(2y-10) | | (15-15)*w=0 | | (15-15)w=0 | | 5+x3=195 | | -25=5a+3a | | 5x=32x-8 | | (5x+38)(8x-19)=180 | | -10.1=x/7+1.1 | | 34=3a-(9-7a) | | m-13+42-6=0 | | 8x19=5x+38 | | 5(x-4)=2(x+27) | | 2/49(6a+9)=20.4 | | -19.8=-2.3+y/7 | | (48-17)w=0 | | r+(-11)=-8 | | (4,1+3,8i)(4,1-3,8i)= | | (5(x^2-7))/(x^2+7)^2=0 | | 4x7^3=241 | | 5x=+6 | | 3^x=135 | | y+9=-1/5 | | 1/7b+3=13 | | 3.4y-5.2=2y+2 | | -26=-5(4d+7) | | 3.4y-5.2=2y-3 | | 5-x-11=4x-22 | | x^2-46x=-60 | | 9a-14=7a+20 | | x^2-46x+60=0 |