If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+17x-3=0
a = 6; b = 17; c = -3;
Δ = b2-4ac
Δ = 172-4·6·(-3)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-19}{2*6}=\frac{-36}{12} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+19}{2*6}=\frac{2}{12} =1/6 $
| 9t-8+7t+5t+6=-23 | | x-3/6-5=0 | | 15x+10=-12x | | 20=4x+4x(x-7) | | 1-6.4x=-7.7+2.43 | | 8y+5=16 | | 6r-2r+1=3r-5(r-2) | | 14h-6+5-6h=79 | | 9k-4=14+3k | | 2^3x-2x3^2x-3=36^x-1 | | 28=7y+2+6y | | 84-x=5x | | 6r+1=3r-5(r-2) | | 45=17x+1+x+8 | | 6+5t-9+6t=8 | | -x+10=x+5 | | 2(a-8)=-2a | | 5(x-6)+9=5x+7 | | 4(x-16)+2/5=10 | | 9-10y+2+5y=45 | | x/5+10=16 | | 18x-5+7+3x=23 | | 6r+1=5(r-2) | | 30x/3+10=25 | | 10+21x=3x+1 | | 5/2-x/4=23/8 | | 8/2r-3=5/2r | | 2x-17-3x=x+4+x | | 5y-4=3y+7 | | x•(2-4)=4(x+3) | | 28a+4a=32 | | Y+2/5x=7 |