If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+26x+8=0
a = 6; b = 26; c = +8;
Δ = b2-4ac
Δ = 262-4·6·8
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-22}{2*6}=\frac{-48}{12} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+22}{2*6}=\frac{-4}{12} =-1/3 $
| 2x-4/x+1=4/5 | | X(2x+12)=260 | | 2(x+5)=3(−2+13x) | | 2.71^(x+5)=2 | | 4(6x=x) | | 25x2-40x=-16 | | 7+5c=47 | | x/3x/51=3x/4-1/2 | | m2-8m=-14 | | 6x/5+2x=1 | | 17+2d=37 | | 1/8+c=54 | | x=(3/5)x+(7/8)x+26 | | x+(14x-5)=90 | | 4x2-4x+11=0 | | 7(N+2)-3=25-3n+4 | | x=3/5x+7/8x+26 | | 5x2-36x+7=0 | | 7×+2y=53 | | x/3+x/5+1=3x/4-1/2 | | 0=-16t2^+245 | | 3x-10+6×(2x+3)=-2×(3-3x)-4 | | x2+4x-4=0 | | x+(19x+20)=180 | | 2(1-x)-3=3(2x+1)+2 | | 2x2-7x-4=0 | | -6x(2)=3×(-6)-3 | | v+1.97=8.57 | | 9x2-6x+1=0 | | -6x-3x=-6-3-2 | | -2×(3y-1)=3×(y-2)-1 | | 5x-0=-4 |