If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+2=32
We move all terms to the left:
6x^2+2-(32)=0
We add all the numbers together, and all the variables
6x^2-30=0
a = 6; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·6·(-30)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*6}=\frac{0-12\sqrt{5}}{12} =-\frac{12\sqrt{5}}{12} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*6}=\frac{0+12\sqrt{5}}{12} =\frac{12\sqrt{5}}{12} =\sqrt{5} $
| -7x2+3x=5x | | 6-4x=7x+9x+8 | | 2(x-4)-5x=-17 | | 5x2-3x+1=-3x2=2x | | x-50=x-10=180 | | 16x+4=7x+8 | | 3y+11=10y=180 | | X2+12=27x+70 | | (6x+-2)+(11x-3)=180 | | -3x2-2x=4-6x2+1 | | 40+2x-12=180 | | X2+4=10x | | k3+ 10=14 | | -x2-x-1=0 | | -15x2+17-6=0 | | 2x^2+18x-16=0 | | 10-2a=-5a-50 | | -6x2+7x=7x-4 | | 9x2+2=7x2-10 | | 27x2=27 | | 1+1+1+1+1+(0.75+1+0.75+1+0.75)*60.75+1+0.75+1+0.75+1+0.75=x | | 22=v/2+17 | | 23x2=18x-2x2 | | (3x-15)+48+90=180 | | 3(18.50)+2x=104.5 | | 2(x-4)+x=x-7 | | 0=19.3t+-4.905t^2 | | 3x+4+9x+2=2 | | 3(x+40)+9=21 | | -7w+2=2(w-1) | | 8.4/4.8=6.3/k | | 7+-10z=57 |