If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+2x-16=0
a = 6; b = 2; c = -16;
Δ = b2-4ac
Δ = 22-4·6·(-16)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{97}}{2*6}=\frac{-2-2\sqrt{97}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{97}}{2*6}=\frac{-2+2\sqrt{97}}{12} $
| 13x2+13x-2=0 | | 2x2-20x+9=0 | | 11x2+11x-1=0 | | 18x2+17x-17=0 | | 10x2+14x+9=0 | | 15x2-9x+3=0 | | 15x-9x+3=0 | | 16x2-3x+17=0 | | 9x2+14x+12=0 | | 11n+11n-1=0 | | 11x2-4x-1=0 | | 14x2-15x-6=0 | | 4x2-2x+11=0 | | 19x2+11x+7=0 | | 18x2+12x-11=0 | | 9x2+4x-5=0 | | 10x2+5x-6=0 | | 8x2-18x-3=0 | | 19x2+6x-3=0 | | 3(5x+8)-7x=6x | | y-18.4=11.3* | | 7y+15=2y+55 | | (9t-6)/12-(8t+12)/12=2/3-t | | (7-x)^2=(x+3)^2 | | 1/4-5x-1/8=5-x/6 | | -x/33+x/22-10=0 | | -x/33=10-x/22 | | 7x=10+12x | | 16x2-7x-12=0 | | 10x2+12x-11=0 | | 9x2-1x-16=0 | | 9x2-x-16=0 |