If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+2x=50
We move all terms to the left:
6x^2+2x-(50)=0
a = 6; b = 2; c = -50;
Δ = b2-4ac
Δ = 22-4·6·(-50)
Δ = 1204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1204}=\sqrt{4*301}=\sqrt{4}*\sqrt{301}=2\sqrt{301}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{301}}{2*6}=\frac{-2-2\sqrt{301}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{301}}{2*6}=\frac{-2+2\sqrt{301}}{12} $
| (x−8)(x+4)=13 | | 28=4/5w | | 8t+16+3t+12=6t-42+8 | | x³=1/27 | | 6x(x+5)=5x+25 | | -3(8+2i)+7i=0 | | 3^2x-2-9=0 | | (-x^2+4x-4)=0 | | 5x-4+1=3 | | 2x=1/2(10x-21) | | -7(k-6)-(-8k+8)=-2 | | 5(u-6)-7u=-10 | | 45.36=5.6·m | | 5t+16-12=-42+8 | | 5-7y/2+4y=-2 | | 2x(x+1)=4−5x | | x=63x | | 3a−18=0 | | 3(x+8)+3x=6(x-2)4x+9 | | 2x(x+1)=5−7x | | 4x-4+2x-(5x-8)=16 | | x(x+4)=5x+6 | | x-(2x+1)=8-(3x+3x) | | 2/k+-2.6=12 | | -7x+11=-19x+11+12x | | 2/k•-2.6=12 | | -2q-63=4 | | 18s^2-50=0 | | 6x-4(9-x)=106;7 | | 4x+10+x=2.5(2x-4) | | 190x^2-25=0 | | 3x+18=24x |