If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+31x-30=0
a = 6; b = 31; c = -30;
Δ = b2-4ac
Δ = 312-4·6·(-30)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-41}{2*6}=\frac{-72}{12} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+41}{2*6}=\frac{10}{12} =5/6 $
| -7n=8+7n | | 6x2+31+30=0 | | 3(2x+5)=2x-17 | | n-10=1/2-7 | | 4x2+16x+15=0 | | x2-2x+7=-7x+1 | | x2-2x-8=7 | | 8x-3x+87=8x+45 | | x2-6x-4=-4x+4 | | 42-5x=76 | | 4(3x-2)-3=-4x+37 | | 2(2x+6)+x+8=180 | | 2-x=13+7x | | -91=3v+6v-9 | | -6x-33=x | | 6x-32=64 | | 3(x+5)=-3x-27 | | 2y=-5+4 | | 3(7x+5)=4x+49 | | 3(7x+5)=4 | | 5x-35=3(3x-5) | | 2(3x-2)+4=4x-14 | | x+4=2(x+1)-9 | | 56y=11(5y+29) | | 191=-u+130 | | x+16=2x+5 | | 99=-u+264 | | 5(2x-4)=5x-10 | | 5x+7=-2x+112 | | 3x+1=2(3x+2) | | -2x+29=3(4x+5) | | 99-w=269 |