If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+35x=6
We move all terms to the left:
6x^2+35x-(6)=0
a = 6; b = 35; c = -6;
Δ = b2-4ac
Δ = 352-4·6·(-6)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-37}{2*6}=\frac{-72}{12} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+37}{2*6}=\frac{2}{12} =1/6 $
| -18=-8x | | 3(b-5)=12 | | 90=30+6x+4 | | 1.5x+6-3=4.5-9 | | 4(t+10)=88 | | A=s2s=3 | | 6(2x-1)-3(x-2)=4(3x-2)-1 | | 22x-42=34-16x | | 74=m/9+64 | | 156+3x-48=180 | | 2c+4=c+12 | | 12x-6+3x+14=8x | | 6=4y+14 | | 5x+16=3x+32 | | 1/2(2x+4)=1/6x | | 9=n+10/4 | | t-14=34 | | 6^4x=260 | | 7x+2=4(x+6) | | x2+-4x-45=0 | | d/2+8=12 | | ³/²(x-5)=-5 | | -2(x+6)=-37 | | 1x^2=+8.5x-4 | | 7x+2=4(x+6 | | 4d+3d-3=d+1 | | 22x-42=35-16x | | (5x+10)-7=5x+3 | | 20+8(q−11)=−12 | | 2=k/9-2 | | 8n(3n+4)=11 | | 3x/4-10/4=2x |