If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+3x-10=0
a = 6; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·6·(-10)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{249}}{2*6}=\frac{-3-\sqrt{249}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{249}}{2*6}=\frac{-3+\sqrt{249}}{12} $
| 2^2x+5*2^x+6=0 | | 1/3y+4=-16 | | -1+R+4r=24 | | 4x1/2=x+7 | | 4x2+9x-2=0 | | 0.4x-9=-2-0.3x | | 14-n=0 | | -8n+6=-8−n | | 3(2x+5)=7x−12 | | 12a-6=-78 | | 8(x-4)=9(x-4) | | (1/3x)=27x-4 | | 61-11x=19+10x | | k/3-8=11 | | (x)+((x+1)^2)/3=35 | | .7y-28=8y-14 | | 5x2+3x-1=0 | | 10=5+3y | | -1-3y=1 | | 12a-6=78 | | 1-2.2x=10-5.2x | | 3y+5=11y-18 | | 3-8(7+5r)=29+r | | 3/5y+2/3=5/4y+7/6 | | 1-2.2x=10-5.2 | | x*14=4 | | -8/x+15=23 | | 3/5x+2/3=5/4x+7/6 | | -10n+3(8+8n)=16(n-4) | | -9-3x=2x+11 | | X-9=15-2x | | 24y=9 |