If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+3x-30=0
a = 6; b = 3; c = -30;
Δ = b2-4ac
Δ = 32-4·6·(-30)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-27}{2*6}=\frac{-30}{12} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+27}{2*6}=\frac{24}{12} =2 $
| 9(x+5)=9x | | 0.02x+0.17(x+6000)=2160 | | -7+10-5g=6-4g | | 4(x+9)=4x-1 | | 23+f=78 | | -4R+7r-3+5r=20-7 | | 3/5x-3/2x=10 | | 6x-8=4(x+3) | | 6u=5u+6 | | X+4/5=x+5/6 | | 7m-(10-3m)=10 | | d/8=16 | | 11+5x=-2(5+x) | | x+5=6x-14 | | -4c+6=-6c+6 | | 7(x+1)=2x+22 | | -4c+6=-6c | | a2+4a+20=0 | | b-17=43 | | 6(1+4x)-5=24+x | | x/12-6=7/24 | | 9-7w=-10w | | -5z-4=-19 | | 10y-7y=6 | | 8*g=40 | | 2x+4-3+2x=13 | | -14+3h=4 | | 9s=6(3s-3) | | 10+2x=10(x+4)-3x | | 6(n+3)+9=5n | | 1+x/2=5 | | 14-e=48 |