If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+48x=0
a = 6; b = 48; c = 0;
Δ = b2-4ac
Δ = 482-4·6·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-48}{2*6}=\frac{-96}{12} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+48}{2*6}=\frac{0}{12} =0 $
| 19t+4=-4 | | -10r-(-14r)-(-8)=-8 | | s+9=14 | | 6x2-54=5x2+171 | | 4(x+6)=34 | | 3=2m-13 | | –9s+–17s+19s−15s+2s=–20 | | -42=-2(j-76) | | 18=9+3u | | -7t-t+(-16t)-7=17 | | 5x-8x-3=-6 | | 2(w+12)=50 | | (4x+2)=(7x-37) | | 5x/7+2=19 | | -7t-t+(-16t)-t=17 | | -6=-6+m/5 | | 99=3(f+10) | | 16j-19j+8=-1 | | 2x2-100=-3x2+96 | | 18=2+2m | | 16j−19j+8=–1 | | (4x+2)^=(7x-37)^ | | 5(x+6)+11=25–3x | | -7t-t(-16t)-7=17 | | z+11/5=4 | | r2-12r+32=0 | | 299-x=283 | | 8+3t=14t= | | 4(x+)=-8 | | 3+8m=10m-13 | | 7b-7b+b+2=11 | | 3+f/3=-15 |