If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+4x-16=0
a = 6; b = 4; c = -16;
Δ = b2-4ac
Δ = 42-4·6·(-16)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-20}{2*6}=\frac{-24}{12} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+20}{2*6}=\frac{16}{12} =1+1/3 $
| -10+4k=-14 | | -2(x-4)=-4x+16 | | (4x-15)=(x+90) | | 4p+1=2p+7 | | 2s–12=–8 | | (7x+2)^(2)+6(7x+2)=(27)=27 | | 1/2^x-6=1/4 | | 3^-2x=1/729 | | 2^5+x=1/16 | | ((4x)/3)-x=(x/15)-(16/5) | | 3m-5=-2 | | x+5^2-9=0 | | p^2+10p=35 | | 4x=11=6x-7 | | 2m+-2=8 | | 40+40+40+40+2x=300 | | 4r=12r+48 | | 8x4-4=13x+6 | | -5g-23=14g-194 | | 3.5x+5x=15 | | 2t+9/5=4 | | r/7-7=2 | | -3=-3f+-9 | | 8u+36=12u | | 8x+30=4x+2x+30 | | k2–16k–17=0 | | 3*x*6=33 | | |2w+3|=11 | | 6(b-9)=9b-45 | | 2p-9=-7p-9 | | (y+3)(y-7)=0 | | 13+7x=9-22x |