If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+6x-6=0
a = 6; b = 6; c = -6;
Δ = b2-4ac
Δ = 62-4·6·(-6)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{5}}{2*6}=\frac{-6-6\sqrt{5}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{5}}{2*6}=\frac{-6+6\sqrt{5}}{12} $
| 15y+9=36 | | (-4x+53)+(7x+16)=90 | | 12–3x/1–x=36/3–x | | -3/9x+2=1/3 | | 7-15x+30=67 | | 2(x+6)=29 | | t/2=40+3 | | x/2+5=27 | | -206=-5.2x+28 | | 8x-15=10x-45 | | 2x^2+10=298 | | x+18—3x=18+2x+16 | | 15=5y-2y | | 1/2(4+n)*6=72 | | 3x^2+9=21x | | 3x^+9=21x | | 15x-19=90 | | 15x-19+4x+52=90 | | 9x+3=1/2(18+6x) | | (14x-20)+(3x+25)=90 | | 48=2y+12 | | 3x-2x^2=25 | | 2x+12=24 | | 6(1-6x)=-282 | | x^+2x+1=64 | | 0=u^2+32u-60 | | 5x+3x-20=180-x | | 2x+1+x4=x+16+x | | -5x-19=16 | | x+13=4x-8 | | t÷5-1=16 | | 4^x-5=78 |