If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+6x=65918160
We move all terms to the left:
6x^2+6x-(65918160)=0
a = 6; b = 6; c = -65918160;
Δ = b2-4ac
Δ = 62-4·6·(-65918160)
Δ = 1582035876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1582035876}=\sqrt{36*43945441}=\sqrt{36}*\sqrt{43945441}=6\sqrt{43945441}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{43945441}}{2*6}=\frac{-6-6\sqrt{43945441}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{43945441}}{2*6}=\frac{-6+6\sqrt{43945441}}{12} $
| 6x2+6x=1940448 | | 8x2+8x=57120 | | 6x2+6x=1164240 | | 6x2+6x=1164241 | | 3x÷4+6=5x÷2-18 | | (y-0,3)/0,1=1 | | 6x2+6x=57120 | | 3x/4+6=5x/2-18 | | 2x2+7x-3=0 | | (x)/(9)+(2)/(3)=(4)/(9) | | T2+2t-8=0 | | 0=5y^2-26y+160 | | 0=5y^2-20y+160 | | (x-2)=7x+14 | | 3(1-4x)-(5x-4)=-20-3(2x-7) | | 3(6p-(21-5p))=4(7p-12) | | 3(6p-(21-5p))=28p-48 | | 42(3m+5)=66 | | -2z=72 | | {4}({2}{y}-{3})={3}({y}+{6}) | | 22y^2+17y-24=0 | | 18c^2-9c-20=0 | | 3x/8=5/6 | | 3m-(9×-1)=24 | | 7y-3(6-y)=2(11-5y) | | 1/2x+1/3x+1/6x=1/2 | | 5x+6+7x=0 | | (1/2x)+(1/3x)+(1/6x)=1/2 | | -3n^2-5n+2=0 | | 1/5k-3=8 | | -6x^2-7x+3=0 | | 2(x-0.6)=6.2-0.8(x-3) |