If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+7x-20=0
a = 6; b = 7; c = -20;
Δ = b2-4ac
Δ = 72-4·6·(-20)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-23}{2*6}=\frac{-30}{12} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+23}{2*6}=\frac{16}{12} =1+1/3 $
| 4+a=2a+3 | | 21=6(1-7p)+3(7p+5) | | 8x+15x=3x-20 | | 3s+50=10s-62 | | 9p–12p=-15 | | 12y-7y-6=63.70 | | 5(x+7)-3(x+6)=1 | | x^2-3/2+9/2=0 | | 16j+18=15j | | 6b-29=b+26 | | 30=2(1+3n)+4(1-3n) | | -4(u+12)=16 | | 7-6x-2+3-4x=7x-4 | | 4(u-12)=20 | | 20-g=5g-18 | | 12=-3(2n-6)+4n | | 3u-6=2u-3 | | -(4n+6)-3(n-7)=21 | | -(4n+6)-3(n-7)=3 | | 2v+42=7v-83 | | 3x-4=5x-9 | | 2v+42=7v-84 | | -4.3x+2.85=-5.75 | | 4x-5x=18 | | 6=a/4+1 | | 2c-29=3c-59 | | -4x-9=9+5x | | 8s-29=7s-16 | | 1/3(m-4=5) | | 1/6(b+6)=1/4b+8 | | a-15/4=22 | | 0,25q=8 |