If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+x-12=0
a = 6; b = 1; c = -12;
Δ = b2-4ac
Δ = 12-4·6·(-12)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-17}{2*6}=\frac{-18}{12} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+17}{2*6}=\frac{16}{12} =1+1/3 $
| 3(5-h)-2(h-2)=1 | | 11s+7=7s-19 | | 90=35+0.22/x | | 4*(x+1)=2x10 | | 11s+7=-19 | | 8(5n-3)=18-2n | | x2+x-1=2x+1 | | x2+4x+9=-4x+2 | | 8-5d=-2 | | F(x)=17x-221 | | s+27/9=-1 | | x2+3x-9=9 | | Y3x=50 | | 17=3x-8 | | 4x2-3x+13=9x+8 | | –3=–11y6 | | 6x2-5x-4=0 | | 6(x+4=30 | | 4x2+23x+15=0 | | 6n-18=6 | | 93=3(c-56) | | x2-17x-21=-7x+3 | | 3(x-1)^3=24 | | x2+7x+14=4 | | x2+7x=14 | | x2+6x-7=9 | | 6x+10=100−4x | | x2-18x+32=-5x-4 | | 6x−6=54 | | x2+7x-9=9 | | x2-3x=10 | | (4b-12)/6=3 |