If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+x-2=0
a = 6; b = 1; c = -2;
Δ = b2-4ac
Δ = 12-4·6·(-2)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*6}=\frac{-8}{12} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*6}=\frac{6}{12} =1/2 $
| u-2.28=7.1 | | x-9.5=3.68 | | (3x-4)^2-(5-4x)^2+7x^2=16x+9 | | 2(4x-5)+4=16x+22 | | x=0-x^2 | | w/2-14=19 | | n-17=43 | | 4n^2=2n-12 | | 2/2x-1=4/3x+1 | | -6=-14+x/4 | | -23+n=72 | | 4(3x-2)=16x+24 | | 10b=-35 | | 6m^2-48=0 | | 7x-7+6x+4=180 | | 5x-2x-x+3=x+7 | | 5a^2-22=0 | | -2p-6=20 | | 3(-7n+5=3(n+5) | | -10x-4x=45 | | -6=-0.02d^2+1.1d | | b(b+11)=0 | | 2x-12=28-4x | | 17/8=5/6b | | -4.4s-2=-5.5s-4. | | -24+-2m=-32 | | 3(4x-8)=0.2(35x+30$ | | 8(5x+9)+12=20 | | 3.5=-16t^2+27t+2.5 | | 2x2-2x-11=0 | | 3(4x-8)=1/5(35x+30$ | | 21=5r+r-6r |