If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+x=5
We move all terms to the left:
6x^2+x-(5)=0
a = 6; b = 1; c = -5;
Δ = b2-4ac
Δ = 12-4·6·(-5)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*6}=\frac{-12}{12} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*6}=\frac{10}{12} =5/6 $
| 7x(13x+11)=0 | | 2x2=13x+7 | | 6y+2y+y=18 | | X=10x2-2 | | 15n-13n=16 | | F(x)=2x+7/3x-9 | | 15j-11j=12 | | 9x/5=-2 | | 6/7=2y | | 7z-6z=5 | | 7z−6z=5 | | 32(12.6666667+.3333333333)+12y=420 | | X=-13y+90 | | 5x-18=-3x+42 | | x-4=12. | | 9=3/8u | | 4(s=7)=84 | | 12t^2-48t=0 | | 65x+35+9x=15(x+4)-25 | | (x+69)+(x-15)+(x)=180 | | -4/5(9x–20)–3x=4/5x–6 | | 360=-16t^2+156t | | -3-4x=33 | | 2-4x=3x(2-3) | | (x+65)+(x+25)+(x)=180 | | 2*(2+x)=2*(3+x) | | 8a-5=-2a-14 | | 3x-1=-x+5-4x | | 14-2x=5+3(-7+3) | | (x+90)+(x-15)+(x)=180 | | –1.2x+3.2=–0.4(3x+8) | | -10=8-2x |