If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-10x+2=0
a = 6; b = -10; c = +2;
Δ = b2-4ac
Δ = -102-4·6·2
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{13}}{2*6}=\frac{10-2\sqrt{13}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{13}}{2*6}=\frac{10+2\sqrt{13}}{12} $
| 2y-6(-1)=-6 | | 3e+5=26 | | 2b−–7=13 | | 9y-4+6y+5=L | | x+(x+30)+2=180 | | 6x+6=-4+3x+16 | | -168=-8x-8(x+7) | | 11y-1=18 | | 155=20-w | | 2x+8+7x=36 | | 100+100+x=400 | | -18x+14=-18x+14 | | x=9.1=16.8 | | (5x)/(4)+(1)/(2)=x-(1)/(2) | | 1000+x=1001 | | 3/4x-12=7/8x-5 | | 8x+2x+4=34 | | ½x+12=48 | | 2=3x=17 | | 2) 6y-5=7 | | 3c-18=6c=27 | | 6=d÷27.39 | | 11y-1=45 | | (13b-8)-6(2b+4)=-5 | | 4(g+3)=7g-12 | | 3(x-5)+8x=65 | | -16=-4x-4x | | 1/x+3=9 | | 9/5x+83=4/9x+92 | | 0.23x41=9.43 | | 10(e+7) =11 | | -2(-24+8y)=64 |