If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-11x-22=0
a = 6; b = -11; c = -22;
Δ = b2-4ac
Δ = -112-4·6·(-22)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{649}}{2*6}=\frac{11-\sqrt{649}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{649}}{2*6}=\frac{11+\sqrt{649}}{12} $
| x2=2x+10 | | 400-2a=262 | | 3(3a+2)-8=7 | | 8=–6t+14 | | 8+5x=3x+8 | | 3=9–n | | 3a+4=2(7-a) | | 120=x+90 | | (3/4)x-18=12 | | 5x+3=(7x+4) | | 2(7a+5)=66 | | 2(7-a)=4 | | x/7+22=-33 | | 37=c+1 | | 50=8x+180 | | 10/16=x/1 | | 84÷r=12* | | 5+3=-3(5x-6) | | 11p=5p+53 | | 12n+18=15n | | 74+-13x=35 | | -.25x+4.5=-x | | 3(4^x-5)+2=11 | | 7x-10=13x-10+180 | | 7x-10=13x-10=180 | | --9.3=d-3.4 | | –5d=10 | | -0.3=2y+5 | | y-994=-54 | | 4+9(3x-7)=-4x-13-23(2x-2) | | e+.2=2 | | 3=(2y+5)+4y=5 |