If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-12x+1=0
a = 6; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·6·1
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{30}}{2*6}=\frac{12-2\sqrt{30}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{30}}{2*6}=\frac{12+2\sqrt{30}}{12} $
| y8−7=4 | | -197-x=10x+133 | | 127=3(1+5y)+4 | | 13=5h/2 | | X(30+x)=7000 | | 9.9w=2.97 | | 34-2w=4 | | 9r=1-8r+11 | | 4x-30+2x=8 | | F(x+1)=5x^2+3x-6 | | 0.15=0.02j | | 1800=πd≈3.14d≈d | | 10-3n,n=2 | | x+7/2=27 | | 2x-1+40+2x+11=180 | | 2(y+2)=-4 | | 3(7x+4)=20 | | (9x-10)=(6x+14) | | 14^2-47p-7=0 | | 3+2x=7x+9-2x | | 10x2x=40 | | f–4=4 | | 4x-5(2x+1)=x-5 | | -3x+4=7×-6 | | -3(x-2)=4x+3(4-x) | | 76+(9x+6)+(15x+2)=180 | | 5(2x-6)=4(2x+10) | | -5x-2(-4x+6)=-48 | | 8j-5+j=67j=8 | | -3n+1.5=-5n-16.5 | | 15=k25^2 | | F(x)=2x3-4x+13 |