If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-12x-8=0
a = 6; b = -12; c = -8;
Δ = b2-4ac
Δ = -122-4·6·(-8)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{21}}{2*6}=\frac{12-4\sqrt{21}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{21}}{2*6}=\frac{12+4\sqrt{21}}{12} $
| 19x2+10x-4=0 | | 2x2+8x-13=0 | | 5=25/(1.08)^x | | 5y-1/3+7=15 | | 2p/5+8=10 | | q+(q-20)+3q=180 | | 4x2+11x-45=0 | | 14x2+20x-18=0 | | 10x2+17x-10=0 | | 6x2+11x-5=0 | | 6x2-15x-5=0 | | 19x2-19x-11=0 | | 9x2+4x-17=0 | | 17x2-15x-14=0 | | 4x2+2x-16=0 | | 17x2-5x-3=0 | | 17x2+14x-13=0 | | 14x2-17x-7=0 | | 18x2+x+1=0 | | 15x2+3x-6=0 | | 16x2-9x-6=0 | | 10x2-4x-3=0 | | 3x2-8x+12=0 | | 16x2+7x-10=0 | | 5x2-17x-12=0 | | 8x2+3x-4=0 | | 8x2+20x+20=0 | | 4x2-8x-17=0 | | 13x2-18x+15=0 | | 7x2-5x+7=0 | | 4x2+4x+14=0 | | 13x2+3x-6=0 |