If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-150x+150=0
a = 6; b = -150; c = +150;
Δ = b2-4ac
Δ = -1502-4·6·150
Δ = 18900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18900}=\sqrt{900*21}=\sqrt{900}*\sqrt{21}=30\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-30\sqrt{21}}{2*6}=\frac{150-30\sqrt{21}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+30\sqrt{21}}{2*6}=\frac{150+30\sqrt{21}}{12} $
| 3x–1=29* | | 3x/4-4=10 | | (x+4)°=(3x+12)° | | -21(2x-21)+24(24-3x)-29=30(x+30)-22(-3x-22) | | 8–7x=–6 | | 3xx=123 | | -18(18-x)-20(2x+20)-8=19(19-3x)-25(x+25) | | -20-4x=7(6x+5) | | 14x×x=17 | | 5n-20=n+10 | | x2-14x+143=0 | | Z1=2+1i,Z2=4-9 | | 13(x-13)+14(14x-2)=11(3x-11)+28+(10x-21) | | 8x-1+4x+8+91=180 | | 8x-1+4+8+91=180 | | 25+3x=3(-x+6)-29 | | x+15=35,x= | | -(10x-18)+19(4+3x)=9-21(x+7)+4(18-3x) | | 25+3x=3(−x+6)−29 | | 6x+13+11x-2=62 | | √(x)+2=18 | | 0.35/0.78=0.65/x | | 0.78/0.35=x/0.65 | | (9^x)+(3^2x)+1=54 | | (9^x)+(3^2x+1)=36 | | -4(16+8x)+12(7-3x)=50(x+3)-(15-x) | | (9^x)+(3^2x)-1=53 | | 2^(p)=1/(8^4) | | 14d+4=7d-24 | | 14d+4=8d-24 | | 2^p=8^-4 | | –9x+5–3x=22 |