If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-15x-5=0
a = 6; b = -15; c = -5;
Δ = b2-4ac
Δ = -152-4·6·(-5)
Δ = 345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{345}}{2*6}=\frac{15-\sqrt{345}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{345}}{2*6}=\frac{15+\sqrt{345}}{12} $
| 19x2-19x-11=0 | | 9x2+4x-17=0 | | 17x2-15x-14=0 | | 4x2+2x-16=0 | | 17x2-5x-3=0 | | 17x2+14x-13=0 | | 14x2-17x-7=0 | | 18x2+x+1=0 | | 15x2+3x-6=0 | | 16x2-9x-6=0 | | 10x2-4x-3=0 | | 3x2-8x+12=0 | | 16x2+7x-10=0 | | 5x2-17x-12=0 | | 8x2+3x-4=0 | | 8x2+20x+20=0 | | 4x2-8x-17=0 | | 13x2-18x+15=0 | | 7x2-5x+7=0 | | 4x2+4x+14=0 | | 13x2+3x-6=0 | | x/4=3/2+x | | 15x2+7x+1=0 | | 16x2-9x-9=0 | | 3x2-20x-14=0 | | 2x2+12x-13=0 | | 9x2+3x-5=0 | | 3(7t+5)-2t=4 | | 0.3(5x-7)=3(0.2x-3.2) | | 4(3a)-11=7(2a-5) | | 1x4+4x3-3x2-10x+8=0 | | x4+4x3-3x2-10x+8=0 |